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SUMMARY

In this work, I explore the task of robot sculpting. I propose a search-based planning

algorithm to solve the problem of sculpting by material removal with a multi-axis manip-

ulator. I generate collision free trajectories for a manipulator using best-first search in two

different material representations – a voxel representations and a subdivision surface rep-

resentation. I also show significant speedup of the algorithm in the voxel representation by

using octrees to decompose the voxel space. I demonstrate the algorithm on a multi-axis

manipulator in simulation and on a physical robot by sculpting Michelangelo’s Statue of

David.
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CHAPTER 1

INTRODUCTION

Sculpting is the art of generating 3D structures through addition or removal of material.

In this thesis, I address the problem of sculpting with robotic manipulators by removing

material. A robot that can sculpt a 3D model from a given material with no human guidance

can have diverse applications in fields such as art, manufacturing and medicine. It could be

used to create original sculptures as well as replicas of classical sculptures. Robots could

also be used to sculpt intricate ornamentations on building facades, which is generally

prohibitively expensive due to the amount of highly skilled labour required. Another very

important application is in rapid prototyping of parts. It is often assumed that addition of

material (as with 3D printing) is a better solution for rapid prototyping. However, with a

fast and robust robotic sculpting process, it will be possible to prototype parts by removal

of material with minimal human input, allowing the use of stronger materials.

The key unsolved challenge in robotic sculpting is generating optimal collision free tra-

jectories in a dynamic environment, which will enable a robot to sculpt a given 3D model.

I address this problem using a search algorithm that sequentially generates collision-free

trajectories, ensuring that the trajectories are optimal, and that the dynamic characteristic

of the environment is taken into account.

I build up to two different approaches based on different representations of millable ma-

terial – a voxel representation and a subdivision surface representation. Both approaches

have their merits and demerits, which I discuss in this thesis. I do not focus on the final

surface finish in this work since that is beyond the scope of this thesis. Much literature con-

cerning toolpaths for smooth surface finishes already exists. Instead, I present my approach

as a generalized bulk material removal method, which is able to remove the majority of the

material for sculpting fully autonomously, turning a complicated sculpting problem into a

1
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simpler surface finishing problem.

The major advantage of both proposed approaches over the current state of the art

robotic sculpting and machining process is that is that my approaches require no human

intervention from start to end. Further, the search algorithm used incorporates standard

robot motion planning techniques for generating trajectories for the multi-link manipulator.

This allows plug-and-play use of state-of-the-art motion planning algorithms that perform

precise collision detection for a well defined planning environment.

1.1 Contributions

I have made the following contributions in this thesis:

First, I present a simplified sculpting model based on a translating robot moving in a voxel

space for material removal. I demonstrate a search based path planning algorithm that

removes the desired material in the voxel space.

Second, I present an octree approach to decompose the larger voxel space into smaller

segments. I present a new search algorithm to generate a trajectory for the translating

robot that will cover all the nodes of the octree representation of the model that have to be

removed.

Third, I augment the search algorithm to generate trajectories for a multi-link manipulator

for voxel removal inside each block of the octree representation of the model.

Fourth, I propose a subdivision-surface representation for sculpting, and adapt the search-

based multi-link manipulator planning to sculpt material from 3D shells generated by

subdivision-surfaces.

Finally, I show the results of the above approaches by sculpting 3D models and simple 3D

shapes from a block of styrofoam.

2
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I explore current techniques and methods for robotic sculpting across multiple domains

in Chapter 2. I explain each part of my algorithm in detail in Chapter 3. I go over the

experiments and evaulations in Chapter 4. I review the results and discuss the performance

of each individual algorithm as well as the advantages and shortcomings in Chapter 5.

Finally, I conclude the research and discuss possible future steps for this work in Chapter 6.

3
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CHAPTER 2

RELATED WORK

2.1 Robotic Sculpting

Not much work has been done in the robotics community on the topic of robot sculp-

ture. Xuejuan et al. (2007) and Lei et al. (2008) proposed a full sculpture robot system.

In their work, they showcased a topography sculptor, which, given a topological map, is

able to sculpt the terrain from a block of material. They generated NURBS splines along

one direction of the map. The splines form the trajectories form their robot’s end effec-

tor. They did not perform any complex collision detection under the assumption that no

concave structures would be sculpted, allowing the robot easy access from the top.

Duenser et al. (2020) propose a cutting edge method of using hot-wire cutting for

sculpting. They use a flexible rod held between two controlled robotic arms to cut large

chunks of material for sculpting. For each cut, starting with an initial approximate cut, they

use a physics simulation to optimize the cut path directly as a function of the robot’s trajec-

tory. They use deformation of the wire as the distance between the end effectors of the two

arms is reduced to generate convex cuts. Though their method is able to produce sculptures

with a smooth surface finish, the hot-wire method is only feasible for soft materials such as

styrofoam. Their method will not work for harder materials such as stone and metal.

2.2 The Machining and Manufacturing Approach

Sculpting a 3D model through material removal with a multi-link manipulator is an analo-

gous problem to multi-axis machining, a well studied problem in the machining and CAD

domains. While multi-axis machining is considered a solved problem, there are many

shortcomings in the general solution that make it unsuitable for completely autonomous
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sculpting. The pipeline for multi-axis machining involves a CAM software that generates

just a translational and rotational trajectory for just the milling tool, a post processor that

generates machine G-codes (Koren, 1983), a processor that performs the inverse kinemat-

ics for the multi-axis machine, and a simulator that runs ahead of the actual machine to

detect collisions. When a collision is detected, the system returns to the preprocessing state

to generate a new toolpath to avoid the detected collision (Lasemi et al., 2010). This is an

iterative process where a solution is generated, tested and corrected till a final solution is

found. As a result, machining a single model requires a large amount of time, wastes a

significant amount of material during failed attempts, and necessitates a human operator to

supervise the milling and stop the machine during collisions not caught by the simulator in

order to prevent damage to expensive machine components. Generation of a new toolpath

that avoids the previously observed collision also requires human input.

Literature in the CAD domain describes collisions of two general types – local and

global. Local collisions involve collisions of the tool tip with material that is not intended

to be removed. Global collisions describe broader collisions of all parts of the machine

with any part of the material. Several local and global collision detection methods have

been proposed. Ilushin et al. (2005) presented a ray-tracing method for global collision de-

tection. Jun et al. (2003) proposed a configuration space search for global collisions. Choi

et al. (1997) and Morishige et al. (1997) also explored configuration space collision detec-

tion. Wang et al. (2018) presented a GPU accelerated method for global collision detection.

Similarly, other methods based on surface properties (Chen et al., 2005; Bo et al., 2016),

graphics assistance (Wang et al., 2006), and through simulation (Lauwers et al., 2003) have

been suggested as well. Tang (2014) outline several such methods. However, the global col-

lision avoidance methods in all these works still limit detection to tooltip and tool holder

only, still requiring a simulator to detect collisions with the rest of the moving machine and

reiterate the preprocessing step.

Jang et al. (2000) and Yau et al. (2005) present the use of voxels for fast and accurate

5
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simulation for CNC milling. Though their work does not perform any actual machining or

planning, it does demonstrate the valid use of voxels for representing millable models.

As described in (Lasemi et al., 2010), the primary focus for sculpting in the machining

domain is generation of smooth trajectories along the surfaces of 3D models. Works such

as (Tsai et al., 2003; Chen et al., 2003; Hu and Tang, 2016; Huo et al., 2019; Dittrich

et al., 2019) present various methods of toolpath generation for both bulk material removal

and fine surface finishes. The generation of these toolpaths does not take full robot or

environment geometry into account – the focus is simply on the contours of the toolpath

for fine surface finishes.

Several machining tasks are performed by industrial robots. KUKA (KUKA, 2016)

and CNC Robotics (CNCRobotics, 2010) provide complete CNC machining solutions us-

ing robotic arms. Much like other machining work, they use general Computer Aided

Manufacturing (CAM) software for toolpath generation. (KUKA, 2018) shows the use of

an industrial KUKA arm for milling props for a movie studio. After 3D models of the

props are generated, The SPRUTCAM CAM software is used to generate toolpaths for the

milling process. The toolpaths are sent directly to the controller of the KR 210 R3100

robot. With only 6 degrees of freedom, the controller can directly generate robot joint tra-

jectories to follow the given the toolpath trajectories. No collision detection between the

robot body and the workspace is performed during the planning.

2.3 Robotic Coverage

Sculpting can be seen as a coverage problem where the robot has to cover the entire volume

to be removed with its end effector. The general approach for robotic coverage involves

decomposing the coverage space into convex cells in the workspace, and then naively gen-

erating collision free coverage paths inside those cells (Choset, 2001, 2000; Atkar et al.,

2005; Breitenmoser et al., 2010). These approaches generally assume a translating robot.

Thus, avoiding obstacles in the workspace is adequate. Such approaches are not suitable to

6
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be used with multi-link redundant manipulators such as in this work since it is significantly

harder to map complex obstacles, even those defined geometrically, into the configuration

spaces of redundant manipulators (Zaplana and Basanez, 2018). Avoiding obstacles in the

workspace of such manipulators is not sufficient to ensure collision free trajectories.

Hess et al. (2012) proposes a coverage solution for manipulators on 3D surfaces. How-

ever, while their method is feasible for collision detection in a static environment, it will

not work in a dynamic environment such as sculpting where material is constantly being

removed. As the workspace expands with the removal of material, newer, more optimal

paths will be available, which Hess et al. (2012)’s work will not be able to use.

2.4 Search Based Motion Planning

Search based motion planning for robotic manipulators is a well studied topic. Heuristic

searches such as A* search are able to find least-cost paths and are theoretically guaranteed

to be complete and optimal. Cohen et al. (2010) propose a search based planner where

instead of discrete robot states, the search space is comprised of discrete motion primitives.

Other approaches such as (Schmitt et al., 2017) extend general sampling-based roadmap

planners to use graph search for planning.

7
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CHAPTER 3

TECHNICAL DESCRIPTION

The problem I am addressing can be stated as follows:

Given some material of known dimensions M , a 3D model of an object S that fits

within the dimensions of the material, and a robotic manipulator that can remove material

at its end effector, compute an optimal collision-free trajectory ξ(t) : [0, 1] → Q for the

manipulator that will sculpt the 3D model S from the material M by removing material at

the manipulator’s end effector.

T (ξ) = M − S (3.1)

Above q ∈ Q where Q is the configuration space of the robot, and t is the trajectory

parameter ranging from 0 to 1, and T : Q → SE(3) is the forward kinematic map (Lynch

and Park, 2017) that maps generalized coordinates to an end-effector pose in 3D space. T

is a transformation that uses the forward kinematics mapping of the robot T : Q→ SE(3)

on a robot trajectory ξ to remove material at the robot’s end effector along the trajectory.

3.1 The Voxel Space Approach

I first simplified the problem by representing the 3D model S as well as the given material

M using voxels. The primary reason for this was to discretize the workspace, making

a search algorithm easily implementable. Further, voxelizing the 3D model allowed me

to work at different resolution levels, allowing varying levels of search complexity. Each

voxel can have one of two values – material to be kept and material to be removed. As

the robot reaches a voxel with material to be removed, the voxel is removed from the

workspace. Figure 3.1 shows the voxelization of a 3D mesh model of Michelangelo’s

Statue of David, which I used for all experiments.

8
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(a) 3D mesh model (b) Voxelized model

Figure 3.1: 3D model representations of Michelangelo’s Statue of David

To establish a baseline for the performance of the search, I further simplified the prob-

lem by assuming a translating robot instead of a multi-link manipulator. The translating

robot can occupy a single voxel at a time and can translate in 6 directions. This gives it

3 degrees of freedom. When the robot moves to a voxel with material to be removed, the

voxel is removed from the workspace. With this, I formulate a simple search algorithm

inside the voxel space that generates a trajectory for the robot that visits every single voxel

with material to be removed. The new problem can be stated as follows:

Given a voxel grid Mv, set of voxels representing the material to be kept in the voxel

grid Sv ⊂ Mv, and a translating robot, find a trajectory ξ(t) : [0, n] → Mv of n steps of

voxel positions such that every voxel position vi in the trajectory ξ is in the set of voxels to

be removed (Mv−Sv) and that every voxel v in the set of voxels to be removed (Mv−Sv)

is in the trajectory ξ.

ξ | ∀vi ∈ ξ (n) , vi ∈ (Mv − Sv); ∀v ∈ (Mv − Sv), v ∈ ξ (3.2)

9
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A* search (Hart et al., 1968) is often used for path planning in voxel space (Brewer and

Sturtevant, 2018). It is guaranteed to return an optimal path for a given problem provided

that the heuristic used is admissible, i.e., the heuristic underestimates the actual cost to goal

from the current node. At the nth node, A* search expand along the direction where the

sum of the cost of the path from start to n g(n) and the heuristic at n, which is the estimated

cost of reaching the goal state from n h(n) is minimal (eq. (3.3)). In searching for a path

for sculpting in the voxel space, A* search can be used with a heuristic that estimates the

number of voxels of material left to be removed, where the cost to n is the number of steps

taken by the translating robot to reach the nth state (eq. (3.4)). Each node of the search

tree would be a state consisting of the voxel space with current values for each voxel, the

location of the robot, and the path of the robot till that point.

f(n) = g(n) + h(n) (3.3)

g(n) = Nsteps_to_n

h(n) = Nvoxels_left

(3.4)

While good for general path finding, A* search is not ideal for the purpose of robot

sculpting. The reason is that, since the path has to visit all voxels with material to be

removed, it will be extremely long. As a result, there will be several optimal paths available

for the same goal. By design, A* search will only terminate when the guaranteed best path

is found, which, with an underestimating heuristic, will not be until all optimal paths have

been explored exhaustively.

Instead of A* search, I use the greedy best-first search. When an inadmissible heuristic

(h(n)� g(n)) which overestimates the cost to goal is used, the actual cost of the path may

be ignored. Instead, the path with the lowest estimated cost to goal is expanded. Using an

inadmissible heuristic in the search no longer guarantees an optimal path. However, when

a very large number of optimal paths are available with an equal cost g(n), only one such

10
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path will be expanded. I used greedy best-first search for the translating robot in voxel

space with a heuristic h1(n) that was the sum of the number of voxels left to remove and

the L1 distance to the nearest voxel to be removed (Equation (3.5)). The start position of

the robot is chosen to be a voxel with material to be removed on an outer face of the voxel

space closest to one corner of the voxel space. Separate instances of the search were run for

partitioned sections of voxels with material to be removed, i.e. different sections of voxels

with material to be removed that are completely separated by voxels with material to be

kept.

h1 (n) = Nvoxels_left + L1 (nearest_voxel) (3.5)

Algorithm 1: Best First Search for Pure Voxel Approach

PriorityQueue OpenSet
List ClosedSet
OpenSet.Insert((start, h1(start)))
while OpenSet is not empty do

curr← OpenSet.Min()
if curr is goal then

curr.path;
end
OpenSet.Remove(curr)
ClosedSet.Insert(curr)
foreach neighbor of curr do

if neighbor not in OpenSet and neighbor not in ClosedSet then
OpenSet.Insert((neighbor, h1(neighbor)))

end
end

end

Algorithm 1 shows the best first searched used for the pure voxel approach. Here, each

element inside a priority queue is a state of the voxel grid with a robot location. The priority

queue is a min heap, which orders inserted elements by a given value. The value used is

the heuristic h1. A neighbor of any element in the queue is the state that will be reached by

11
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Figure 3.2: Suboptimal state for A* and best-first search. The blue robot is stuck behind
the red material to be kept while trying to reach the gray material to be removed.

the robot moving in one of six directions. Only valid neighbors are considered – neighbors

that involves the robot moving out of the bounds of the voxel grid or ones that requires the

robot to move to a voxel that is a part of the desired voxel are ignored. A list of previously

visited states is maintained to ensure that the robot doesn’t oscillate in place.

The worst-case running time of a greedy best-first search path finding algorithm in a

voxel space of size n3 (where n is the number of voxels along an edge) is O (n3 log n3).

However, here, the worst case running time will be significantly higher since the search

space is not a position of the robot in the voxel space but a complete state of the voxel space.

Nevertheless, with the assumption that the search does not have to backtrack significantly,

an average runtime of Θ (n3) can be claimed.

The greedy best-first search algorithm also suffers from some limitations faced by A*

search. For instance, in fig. 3.2, the blue robot, after reaching this node, will not be able to

continue to remove the next block with either algorithm, thus forcing the search to begin

exhaustively searching previous nodes till it can find a path that leads to the gray voxel

with material to remove. With larger sizes of the voxel space, such situations will be

hard to avoid even with a well designed heuristic. This would lead to an extremely slow

and inefficient search. Thus, the size of the search area must be decreased through some

12
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segmentation.

3.2 Octrees

Octrees (Meagher, 1980) are a tree data structure where each non-leaf node has exactly

8 children. A cubic voxel space where each side is of length of a power of 2 can be

represented as an octree. Groups of leaf nodes that have a common ancestor and have the

same value (i.e. material to be removed or material to be kept) can be pruned down to the

ancestor node. This can exponentially decrease the number of leaf nodes, thereby creating

a significantly smaller search space. It should be noted, however, that the actual search

is not carried out in the octree itself, but rather in a graph consisting of leaf nodes of the

octree. I will call this graph the octree-graph, and each node in this graph a block.

The problem statement remains the same as described in section 3.1. We are still look-

ing for a trajectory ξ that goes through a voxel grid Mv, removing all material in Mv − Sv

to sculpt the desired model with voxels Sv. While we do reduce the voxel grid Mv into an

octree-graph Mo for the search, the final trajectory is still generated in the voxel grid. We

call the set of octree blocks representing the desired 3D model So

(a) Model in voxel-space (b) Model in quadtree-graph

Figure 3.3: Voxel to quadtree-graph conversion

A voxel grid is turned into an orders of magnitude smaller octree-graph. Figure 3.3

shows the conversion of a pixel grid to a quadtree-graph. The concept is similar to that of

13
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octrees, but in 2D instead of 3D. Figure 3.3a shows the 2D pixel representation of a simple

figure, with red pixels representing material to keep and gray pixels representing material

to remove. The quadtree-graph in fig. 3.3b shows gray blocks with material to remove and

red blocks with material to keep. As can be seen, the pixel graph has 64 pixels, while the

quadtree-graph has just 28 blocks, a reduction of 56%. Larger voxel graphs see a larger

decrease in the number of nodes.

Path planning for a translating robot in an octree-graph is not much unlike planning in

the voxel space. Since the size of each octree-block is known, the robot can be assumed

to occupy an entire octree-block at a time for the search. A slight complication is the

increased branching factor. Whereas a voxel can have at most 6 neighbors, an octree can

have significantly more since it can have smaller, bigger and equally sized neighbors on

any of its sides. These neighbors can be computed using an algorithm from (Samet, 1989).

In this algorithm, for each of the six directions, we try to find a neighbor of equal or

larger size size than the given octree-block node oi ( get_neighbor_of_greater_or_equal_size

in algorithm 2). If node oi has a neighbor larger than itself in that direction, we will stop iter-

ating through the octree when we find it. If node oi has neighbors smaller than itself in that

direction, we will stop at the octree node neighbor of equal size. We will then find all leaf

nodes of that neighbor which share an edge with node oi ( find_neighbors_of_smaller_size

in algorithm 2) (Geier, 2017).

Equation (3.5) shows the heuristic h2(n) used in the the greedy best-first search. Nvoxels_left

is the total number of voxels inside the octree-blocks that are still to be removed in the given

state. This term guides the search towards removing larger octree-blocks first by reducing

the heuristic at values with larger blocks removed. D (nearest_octree_block (n)) is the

cartesian distance to the nearest octree-block. The nearest octree-block is the closest block

o ∈ Mo − So by cartesian distance between the center of that block and the center of the

block currently occupied by the robot at q (n) (eq. (3.7)). With the octree representation,

unlike the pure voxel approach, L1 distance to the nearest block is not taken. This is be-
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Algorithm 2: Calculating Neighbors of an Octree Node
Function get_neighbor_of_greater_or_equal_size(node,
direction):

if node is root_node then
return None

end
if node is node.parent.children(direction.opposite) then

return node.parent.children(direction)
end
upper_node← get_neighbor_of_greater_or_equal_size(node.parent, direction)
if upper_node is None or leaf then

return upper_node
else

return upper_node.children(direction.opposite)
end

End Function
Function find_neighbors_of_smaller_size(node, neighbor,
direction):

candidates← [neighbor] neighbors← []
while candidates.size > 0 do

if candidates[0] is leaf then
neighbors.append(candidates[0])

else
candidates.append(candidates[0].children(direction))

end
candidates.remove(candidates[0])

end
return neighbors

End Function
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cause, at the time of the search, the robot is considered to occupy full octree-block rather

than inside a single voxel.

h2 (n) = Nvoxels_left +D (nearest_octree_block (n)) (3.6)

nearest_octree_block = arg min
oi∈Mo−So

L2

(
posxyz (q (n))− posxyz (oi)

)
(3.7)

The branching factor of the search is higher since a block in the octree-graph can have

more than one neighbor on each side, resulting in more than six adjacent blocks. However,

a higher branching factor does not increase the time complexity of the best-first search. The

worst-case running time will be in the scenario where there is no reduction in the number

of elements in the material representation. In that case, the running time for a simple path

planning search will be O(n3 log n3), giving a similarly higher worst case running time

for the sculpting search. However, since the octree representation significantly reduces the

number of elements in the search, the average running time will also significantly improve

from the pure voxel approach.

Algorithm 3: Sculpting with Translating Robot in the Octree Representation
list OctreePath← octree_search(model, OctreeGraph)
foreach Block in OctreePath do

robot.MoveTo(Block.Corner)
if graph(Block).not_removed then

boustrophedon(robot, graph, Block)
end

end

The search generates a path through the octree-graph to remove all the octree-blocks

with material to be removed. However, to generate a full robot trajectory, a path in the

voxel space must be created. A boustrophedon trajectory inside each block for the translat-

ing robot (Choset, 2000) can be used to remove the material of the block. Boustrophedon

trajectories provide complete coverage of a given volume with a translating robot. When

the robot moves from a block it occupies to a neighboring block, it first moves to a fixed
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corner of the block. This is done using a naive trajectory that first goes to the nearest edge

voxel of the occupied block that neighbors the neighboring block, moving to the neighbor-

ing block, and then going to the specified corner. The robot can then execute the bous-

trophedon trajectory to remove the block. If a block is already removed, a boustrophedon

trajectory is not required. The naive trajectories to move across blocks and to traverse all

voxels of a block are possible for the translating robot simply because collision avoidance

in the workspace is satisfactory for it. Algorithm 3 shows the overall algorithm for sculpt-

ing with the translating robot using the octree representation. The octree_search is the

same as described in Algorithm 1 using eq. (3.6) as the heuristic. Algorithm 4 shows the

generation of a boustrophedon trajecotry inside an octree block.

3.3 Multi-Link Manipulator

Several new challenges are introduced when replacing the translating robot with a multi-

link manipulator. Firstly, the translating robot had a discrete state where it occupied a

single voxel. This is no longer the case with a multi-link manipulator. Thus, a criterion

for material removal with the mulit-link manipulator must be established. Further, naively

generated paths can no longer be used inside the octree-blocks. This is because a naive path

inside an octree-block is no longer guaranteed to be collision free due to the more complex

collision checking required for a multi-link manipulator. Instead, another search based

method must be used to generate those collision free paths. For each octree block oi in

Mo − Vo where oi consists of voxels {vi,0, . . . , vi,n}, we attempt to find a set of trajectories

{ξi,0, . . . , ξi,n} that will visit the center of each voxel to remove the octree block.

The problem of removing material in discrete voxels with a robot end effector in con-

tinuous space can be solved by establishing a criterion for satisfactory removal of an entire

voxel. As described in Section 3.1, each voxel can be considered to be roughly the size of

the tip of a ball-end mill. I define reaching the center of a voxel with the ball-end of the

mill without colliding with any other voxels or blocks to be sufficient to completely remove
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Algorithm 4: Boustrophedon Trajectory Inside Octree Block
n← block.Size()
i← 0
while i less than n do

j← 0
while j less than n do

k← 0
while k less than n do

robot.MoveTo(i, j, k)
k← k + 1

end
j← j + 1
while k greater than −1 do

robot.MoveTo(i, j, k)
k← k − 1

end
j← j + 1

end
i← i + 1
while j greater than −1 do

k← 0
while k less than n do

robot.MoveTo(i, j, k)
k← k + 1

end
j← j + 1
while k greater than −1 do

robot.MoveTo(i, j, k)
k← k − 1

end
j← j − 1

end
i← i + 1

end

18



www.manaraa.com

(a) Ball End Mill (b) Virtual Ball End Mill inside a Voxel

Figure 3.4: The spherical tip of a ball-end mill fits inside a voxel

that voxel. This can be seen in Figure 3.4. Making the voxel size lvox slightly larger than

the diameter of the ball-end mill 2 · rmill allows the robot some freedom for goal states for

trajectories. While this does leave some residual material, I assume that it is not substantial

enough to be a cause for concern.

lvox = 2.5 · rmill (3.8)

The broader search algorithm in the octree-graph has two major changes from the algo-

rithm described in Algorithm 1 and in section 3.2. Firstly, not all neighboring octree-blocks

of the current octree-block may be removable since a collision free removal trajectory in-

side those blocks may not be possible with the current state of the voxel space. That is,

for octree block oi with a visible face, for voxel vi,j ∈ oi, a trajectory ξi,j that takes the

end effector of the robot from posxyz (vi,j−1) to posxyz (vi,j) may not be possible due to

collisions with other octree-blocks in Mo or other voxels in oi. Thus, a check for whether

a block is entire removable is required before expanding the search to that node. Secondly,

the robot can attempt to remove any octree-block with a visible face rather than only being
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able to visit neighbors of the currently occupied octree-block. That is, for removed octree

block oi, the next octree block removed need not be a direct neighbor of oi. Any octree

block oj in Mo − So with an open face can be removed as long as a feasible trajectory ξj

can reach all voxels v in oj . Thus, the search can be significantly simplified from previous

searches.

The search heuristic h3 for the broader search (eq. (3.9)) prioritizes removal of the

largest octree-blocks. At each search stage, the search attempts to remove the largest octree

block with a visible face. No factors for distance to octree blocks are included since the

robot can access any open-faced octree block with minimal cost.

h3 (n) = Nvoxels_left (3.9)

A second greedy best-first search is required inside each block in order to determine

whether the block is removable as well as to generate a trajectory for the manipulator to

remove that block. For a given octree block oi with voxels {vi,0, . . . , vi,n}, we must find

trajectories {ξi,0, . . . , ξi,n} that will visit each voxel with the end effector in an order such

that each trajectory {ξi,0, . . . , ξi,n} is completely collision free. The best-first search using

heuristic h4 (eq. (3.10)) will generate an ordering of voxels {vi,0, . . . , vi,n} and correspond-

ing trajectories {ξi,0, . . . , ξi,n} to completely remove octree block oi. The key difference

from the search used in the voxel grid and the octree graph is again that the robot is no

longer constrained to moving inside a voxel grid – the robot can move to any voxel with a

visible face. Algorithm 5 shows the search algorithm used for the inner search. The same

algorithm is used for the outer search.

The inner search to remove octree block oi begins with the robot at a joint configuration

at the end of the previous search. At each node of the search tree, the tree can expand to

a voxel vi,j inside the block that has at least one face open that minimizes the heuristic h4.

Expanding to a voxel vi,j involves attempting a trajectory qi,j from the current voxel vi,j−1
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Algorithm 5: Best First Search inside each Octree-Block for Multi-Link Manip-
ulator

PriorityQueue OpenSet
List ClosedSet
List PlanQueue
foreach voxel in Block do

if voxel.has_open_face() then
OpenSet.Insert((voxel, h(voxel)))

end
end
while OpenSet is not empty do

foreach curr in OpenSet do
curr_plan← robot.plan_trajectory(curr.center)
if curr_plan.is_complete then

foreach neighbor of curr do
if neighbor not in OpenSet and neighbor not in ClosedSet then

OpenSet.Insert((neighbor, h(neighbor)))
end

end
OpenSet.Remove(curr)
ClosedSet.Insert(curr)
PlanQueue.Insert(curr_plan)
continue_search← True
break;

end
end
if continue_search then

continue_search← False
else

return False
end

end
return PlanQueue
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to voxel vi,j . If a trajectory is not possible, that voxel is not considered. If no trajectories are

possible to any of the voxels with open faces within the block oi, the block is unremovable

at that state, and is skipped in the outer search. The motion planning for the search is

done using the Open Mation Planning Library (OMPL) (Sucan et al., 2012) and collision

avoidance is implemented using the Flexible Collision Library (Pan et al., 2012). A Unified

Robot Description Format (URDF) model of the robot is used to check for collisions with

both the remaining octree-blocks as well as the individual voxels inside the current block

with all parts of the robot. The URDF format is an XML based robot description format

that contains robot joint descriptions and references to mesh files for robot parts, along with

description of the robot’s environment (Sucan and kay).

The heuristic h4 used (eq. (3.10)) favors voxels that are closest to the current voxel

(L2 (prev_voxel)). L2 distance is used instead of L1 distance since the arm no longer has to

follow a path in the voxel space. Linear trajectories are also preferred. Direction of voxel

removal is the direction moved from voxel vi,j−1 to vi,j . Search paths that continue in the

same direction, that is direction from vi,n−1 to vi,n is the same as from voxel vi,n−2 to vi,n−1,

are preferred (αprev_direction). Finally milling "inwards" is also not preferred. The heuristic

value is increased for directions opposing any of the open faces of the block (αinner_direction).

h4 (n) = L2 (prev_voxel)− αprev_direction + αinner_direction (3.10)

In the scenario that every single octree-block with a reachable face is non-removeable,

i.e., all voxels of none of the octree-blocks can be reached, the sculpture cannot be com-

pleted. The outer search in the octree graph terminates at that point.

3.4 Subdivision Surface Representation

A big limitation of using voxels is that voxel sizes will depend on the size of the milling

tool, and larger voxel sizes can lead to a lot of extra material remaining on the finished
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sculpture. Since the voxelization overestimates the 3D model by adding voxels wherever

a voxel position in the voxel space contains any volume of the 3D model, using freeform

surfaces to represent the 3D models will allow us to remove excess material that would

have otherwise been added as voxels which intersect a very small volume of the 3D model.

There are several methods for representing 3D models. I primarily looked at 2 – Catmull-

Clark subdivision surfaces (Catmull and Clark, 1978) and Non-Uniform Ration B-Splines

(NURBS) surfaces (Piegl and Tiller, 2012; Rogers, 2000). Each representation has its

own advantage. NURBS allows fast evaluation of the surface with parametric definitions.

This can be used to sample points on surfaces. Subdivision surfaces provide an easy way

to calculate the intersection between two surfaces (Severn and Samavati, 2006), allowing

removed material in a surface to be modeled accurately. Thus, I used NURBS surfaces for

preprocessing the 3D model, and subdivision surfaces to generate millable representations

of the freeform surfaces.

The general approach here is to modify the octree and voxel approach into a freeform

surface approach. To adapt the search method to the free-form surface representation,

discrete points on the freeform surfaces are required. I propose the use of shells Si of even

thickness around the given 3D model S, with evenly spaced points pi,j on the surface of

each shell Si representing the discrete search space. This approach requires the use of a

convex model. For a given 3D model, a convex hull can be calculated using the methods

described in (Loop, 2002). The reason for using a convex hull for the surface is so that as

shells are created around the surface, shells don’t intersect themselves.

Sculpting with a ball-end mill on a freeform surface is essentially a morphological

erosion process. I use the inverse of the erosion process – morphological dilation – to

generate shells around the first evaluated 3D model. For a given parametric NURBS surface

S (u, v), the offset surface will be defined as follows (Farouki, 1986):

SO (u, v) = S (u, v) + d ·N (u, v) (3.11)
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where d is the offset distance, and N (u, v) is the unit normal of the surface at u, v. The

normal can be calculated as follows :

Su =
∂S

∂u
, Sv =

∂S

∂v
(3.12)

N (u, v) =
Su × Sv

|Su × Sv|
(3.13)

With an offset distance d equal to the radius rmill of the ballend mill, successive offset

curves SO
i can be generated to create shells around the inner shell. These shells are created

till a shell completely encapsulates the given material M in the shape of a cube.

Once the NURBS shells are created, a subdivision surface representation of each is

calculated using (Lanquetin and Neveu, 2006). Subdivision surfaces consist of a control

mesh of vertices P , which are subdivided to create a new control mesh with a new set of

vertices. Before subdivision, a new point is added to center of each face, and one at the

middle of each edge. Then, each point P moves to the new location P ′:

P ′ =
F + 2R + (n− 3)P

n
(3.14)

where F is the average of all newly created face points of faces that touch P , and R is the

average of all newly created edge points that touch R. P ′ is the barycenter of P , R and

F with different weights. Each subdivision iteration creates a finer and finer control mesh.

After some iterations, a final model Ssubdiv is obtained.

The larger subdivision shells have to be intersected with the starting material cube.

For each subdivision shell Ssubdiv,i, an intersection with the material Msubdiv is calculated

using (Severn and Samavati, 2006), giving a new control mesh defining a trimmed subdi-

vision shell Ssubdiv_trim,i. Each of these shells will be contained inside the material block

Msubdiv. This gives us a set of shells Ssubdiv_trim,i of thickness equal to radius rmill of the

spherical tip of a ball-end mill that when combined, create the starting materialMsubdiv, and
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when removed, leave the convex hull of the desired 3D model Sconvex. By reaching every

point of the surface with a ball-end mill, the entire shell can be removed.

Figure 3.5: Subdivision surface shells around blue convex hull of red desired model with
square starting material

Figure 3.5 shows a 2D representation of these shells. The red figure is the desired model

S. The blue figure is the convex hull of the desired model Sconvex with black subdivision

shells Ssubdiv_trim,i around it. The thick stroked square shows the starting material M . The

final shell completely encapsulates the square material. The actual shells will be the inner

intersection Ssubdiv_trim,i of the shells with the starting material.

Pagani and Scott (2018)’s method is used to generate evenly spaced sample points on

the surfaces of the NURBS shells. NURBS surfaces are parameterized on two axis along

the surface, allowing easy uniform sampling. Pagani and Scott (2018) present a reparame-
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terization that takes surface area and surface curvature into account, leading to more evenly

spaced sampling.

pu(u) =
Au(u)

2Au(un+1)
+

ku(u)

2ku(un+1)

pv(v) =
Av(v)

2Av(vn+1)
+

kv(v)

2kv(vn+1)

(3.15)

Equation (3.15) shows the mixed marginal parameterization of the NURBS curve,

where Au(u) and Av(v) are the marginal cumulative areas of the surface along u and v,

and ku(u) and kv(v) are the marginal mean curvatures of the surface along u and v, both as

computed in (Do Carmo, 2016). Using the marginal cumulative areas of the surface Au(u)

andAv(v) along u and v, and the size of the ball-end mill rmill, the number of sample points

required can be calculated.

Nsamples, u = 1.5 ·
∫ 1

0
Au(u)du

rmill

Nsamples, v = 1.5 ·
∫ 1

0
Av(v)dv

rmill

(3.16)

Points pi,j can be calculated on NURBS surface So
i using eq. (3.15). The 1.5 factor spaces

the points with some overlap such that reaching each point pi,j with the ball-end mill will

entirely remove the shell with minimal residual material. The 3D coordinates of all sampled

points pi,j on all NURBS shells So
i are evaluated. Only the points that are within the volume

of the given material M are kept, giving a set of sample points for each trimmed shell

Ssubdiv_trim,i.

Figure 3.6 shows a 2D example of removal of material on sample points of a shell. Fig-

ure 3.6a shows a blue inner shell Ssubdiv_trim,i−1 and a red outer shell Ssubdiv_trim,i. Figure 3.6a

shows the same two shells with circles representing the removal of material with a ball-end

mill at evenly spaced sample points pi,j . As can be seen, due to the overlap between the

spheres from the spacing between the sample points pi,j , most very little material of the
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(a) Two subdivision surface shells

(b) Insignificant residual material of red shell after milling at sample points

Figure 3.6: The red subdivision surface shell is milled at overlapping sample points with
minimal residual material

red shell remains Ssubdiv_trim,i. This shows how spacing with overlap will allow complete

removal of each shell with minimal residual material.

A major advantage of using discrete representation for removable material such as vox-

els is that as material is removed, the model of the remaining material can quickly be

updated for collision prevention. With the subdivision shell approach, while the removal

of a shell Ssubdiv_trim,i can simply be modeled as the shell Ssubdiv_trim,i−1 below it , removal of

smaller bits of material at each sampled point from a shell is modeled as an intersections

using Severn and Samavati (2006)’s method between the shell Ssubdiv_trim,i and the sphere

of radius rmill at sample point pi,j . The residual red shell in fig. 3.6b visualizes the inter-

section of spheres of rmill of the ball-end mill and the subdivision shells. At each stage of

the search algorithm, the intersected subdivision surfaces are subdivided to evaluate a mesh

model of the shell, which is then used as an updated collision object in the scene for the

motion planning using OMPL and FCL.

As a material of a shell Ssubdiv_trim,i is removed by completing a search through all the

sample points pi,j on the shell, the entire shell is removed from the model. That is, instead
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of maintaining the residual material from the intersection of the spheres of radius rmill at

the visited sampled points pi,j and the shell Ssubdiv_trim,i, I assume that the residual material

is insignificant enough to be entirely omitted before the search in the next shell. This

assumption is reasonable per the chosen sample point spacing.

Each subdivision surface shell Ssubdiv_trim,i can be thought of as an octree-block. How-

ever, unlike the voxel space with the octree representation search where an outer level

search in the octree-graph is required to generate a path through the octree space (in the

case of the translating robot), or to create an ordering of octree-blocks to remove (in the case

of the multi-link manipulator), shells can be removed in the order going from the largest

Ssubdiv_trim,n to the smallest Ssubdiv_trim,1, thus negating the need for the outer search. The

only thing required is the inner search on each shell Ssubdiv_trim,i. In this case, each sampled

point pi,j on the surface is analogues to each individual voxel vi,j inside an octree-block oi

of the octree representation.

A greedy best first search is used to generate a path through each sample point. The

search algorithm, shown in algorithm 6, is very similar to the one used in the octree ap-

proach with a multi-link manipulator. However, since each shell Ssubdiv_trim,i is entirely

convex, every sampled point pi,j on the surface is accessible. Thus, I start with a queue of

all sample points, attempting to remove them in an order guided by the heuristic. The worst

case time complexity of this algorithm will be O (n2) for n sampled points on each shell.

The heuristic h5(n) aims to minimize distance between successive points visited, and

encourages linear trajectories (eq. (3.17)). L2 (prev_point) gives the distance between the

current and the previous 3D sampled points on the surface. Since the sampling method is

based on the 2-axis parametrization of the NURBS surfaces, sampled points are generated

in a grid. Thus, the search attempts to sculpt along the same axis (αprev_direction).

h5 (n) = L2 (prev_point)− αprev_direction (3.17)
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Algorithm 6: Best First Search on Sampled Points on each Subdivision Surface
Shell

PriorityQueue OpenSet
List PlanQueue
foreach point in shell.sampled_points do

OpenSet.Insert((point, h(point)))
end
while OpenSet is not empty do

foreach curr_point in OpenSet do
curr_plan← robot.plan_trajectory(curr_point)
if curr_plan.is_complete then

shell.remove_point(curr_point) OpenSet.Remove(curr)
PlanQueue.Insert(curr_plan)
continue_search← True
break;

end
end
if continue_search then

continue_search← False
else

return False
end

end
return PlanQueue
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The search (algorithm 6) attempts to plan a path to the selected sample point, adding

the plan to a queue if it is collision free and feasible. Once all the plans are generated for all

the shells, executing the plans will sculpt the final model. In the case that the search on a

shell cannot be completed, the algorithm declares that the surface is not removable, and the

model cannot be sculpted. Since each shell encapsulates the next shell, any non-removable

shell will prevent access to the next shell.
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CHAPTER 4

EXPERIMENTATION DETAILS

I evaluated the algorithms through a series of simulation and physical tests. We tested the

following approaches:

• Pure voxel approach with a translating robot in simulation

• Octree representation of voxel approach with a translating robot in simulation

• Octree representation of voxel approach with a multi-link manipulator in simulation

• Octree representation of voxel approach with a multi-link manipulator on a physical

robot

• Subdivision surface representation with a multi-link manipulator on a physical robot

In this chapter, I explain the testing methodology. I describe the test setups, both virtual

and physical. I explain the evaluation metrics and methods, and describe several challenges

faced during testing.

4.1 Voxel Approach with Translating Robot

I tested the pure voxel space approach with a translating robot in simulation using a 3D

model of Michelangelo’s Statue of David. I voxelized the 3D mesh model at different voxel

resolutions using binvox (Min, 2004), which uses the methods described in (Nooruddin and

Turk, 2003) to generate the voxel model. I used an exact voxelization method that creates

a voxel wherever any part of the mesh model intersects the volume of the voxel. This

ensures that the voxelized model perfectly encapsulates the entire mesh model. The GPU-

accelerated method described in (Nooruddin and Turk, 2003) would produce a model that

might omit voxels that contain minute amounts of volume from the mesh model.
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The voxel resolution defines the number of voxels along an edge of a cube from which

the sculpture is voxelized. This cube now forms the starting material for our sculpting

process. The sculpture is kept at the center of the cube. I generated the voxelized Statue of

David with 4 different voxel resolutions.

I tested this approach purely in simulation. Since the translating robot requires no

physics or dynamics simulation, I used a simple 3D visualizer to render the voxel grid. The

blocks were removed from the space as the robot moved to their location. Verification of

completion was done by checking the remaining voxels against the voxels in the voxelized

3D model.

The primary purpose of testing this approach was to validate the correctness of the

basic search algorithm. I also measured the time taken for the search algorithm at each

voxel resolution in order to establish a baseline for the search performance.

4.2 Octree Representation with Translating Robot

I tested the octree representation with the translating robot in simulation using the same

Statue of David model. I used the same voxel resolutions to create the voxelized models

as in the pure voxel approach. I then created the octree representations from the voxelized

models. As discussed in Chapter 3, I used the best first search to generate paths in the

octree-graph. Paths inside each octree node were naive boustrophedon paths for complete

coverage.

I first evaluated the octree representation by counting the decrease in the number of

voxels in the pure voxel model to the number of octree nodes in the octree representation

of each 3D model at each resolution. I did this in order to demonstrate the impact of

the octree representation on the reduction of the size of the search space, and therefore

reduction in the search time.

The primary evaluation metric of the octree representation with the translating robot

was time taken to complete the search to sculpt the model. I compared the time taken to
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sculpt voxel models at different voxel resolutions with the octree representation against the

pure voxel representation to demonstrate the speedup obtained by this representation.

4.3 Octree Representation with Multi-Link Manipulator in Simulation

I tested the third algorithm using the multi-link manipulator, which also takes into account

collisions with the manipulator, using a simulation of a Franka Emika Panda robot in a

ROS Gazebo environment. The Panda robot is a 7-link redundant manipulator with high

dexterity. The robot is equipped with a parallel finger gripper.

The material was rendered in gazebo as individual octree blocks. Due to the large

number of voxels with bigger voxel resolution models, I was unable to run the simulation

with all individual voxels present rendered at the same time. When searching to generate

a trajectory inside an octree block, the specific block was replaced by its individual voxel.

This allowed me to simulate the sculpting process without slowdown while also properly

simulating the collision scene.

The virtual milling tool was modeled as a cylinder with a hemisphere end attached to

the robot’s gripper link. The size of the sphere was slightly smaller than the size of the

voxels, as shown in Figure 3.4. This was done in order to allow the robot some freedom

in orientation when removing a voxel accessible from a single face rather than forcing it

to approach the voxel perfectly perpendicular to an open face. The axis of the cylinder

was colinear with the axis of the robot’s wrist rotation joint. This singularity resulted in

the decrease of the degrees of freedom of the robot from 7 to 6. In addition, the circular

workspace of the table mounted manipulator prevents it from reaching around the material,

severely limiting its workspace. In an ideal scenario, the manipulator would either be

mounted above the material, providing easy access to all sides, or be significantly larger

than the material, decreasing the size of the desired reachable workspace.

In order to compensate for the shorter reach, I added an additional virtual rotational

joint through the center of the voxel grid. This joint allowed the material to rotate, giving
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the robot access to all sides of the material voxel grid with ease.

I tested the robot on the State of David with three different voxel resolutions. I var-

ied the voxel size and the size of the virtual ball-end mill accordingly. I also tested the

algorithm on a vase model to demonstrate a failure scenario where the robot is unable to

complete the planning due to inaccessible blocks.

I again measured the time taken for the entire sculpting process. I only considered the

time taken for the actual motion planning, not the time spent on execution of the plans.

Running these complex motion plans can take several hours while doing this for the trans-

lating robot is instantaneous. The much larger search times are explained by the collision

checking inside each block. In particular, each branch in the search tree requires the gener-

ation of a motion plan with an external library.

4.4 Octree Representation with Multi-Link Manipulator on a Physical Robot

I further validated my approach on a physical table mounted Franka Emika Panda robot.

The cutting tool comprised of a 12v DC motor with an attached gearbox. A drill chuck

was connected to the motor, and a 1
4
" ball-end mill was inserted into the chuck. The motor

was mounted to the Panda robot with a metal L-bracket and a 3D printed mounting bracket,

which replaced the default parallel gripper of the robot. The motor was driven with a simple

Pulse Width Modulation (PWM) motor controller. Blocks of styrofoam were used for the

cutting material. The material was clamped onto the robot’s workspace. No vision system

was used for collision prevention in order to avoid phantom collision objects around the

sculpting area. Instead, the robot’s environment was modeled in a URDF file. Another

advantage of not relying on a vision system for live collision detection is that the URDF

model can be used to generate all motion plans offline.

One challenge in fine resolution interaction with moveable objects in the real world is

calibration of the robot and the objects with the workspace, in this case between the cutting

tool attached to the robot and the styrofoam material. I tested two approaches for this. I first
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Figure 4.1: Milling tool setup with 12v DC motor, chuck and 1
4
" ball-end mill.

calibrated the robot to an overhead Microsoft Kinect camera using a checkerboard pattern

attached the robot’s gripper. This gave me the robot’s pose with respect to the camera. I

then applied an AR marker to the styrofoam block to identify its pose with respect to the

camera, thereby allowing me to calculate the pose of the styrofoam block with respect to

the robot. However, this approach limited the available area for removal on the material

since the marker was attached to the material. Further, due to the nature of pose estimation

via optimization used for calculating the AR marker pose, there is a fair amount of jitter and

uncertainty in the material’s pose, which, with a ball end mill of just 1
4
" can be a substantial

error. Thus, while the vision based calibration system would be ideal in scenarios where the

material was moving with respect to the robot’s fixed base with some uncertainty, thereby

requiring repeated recalibration, it is both unnecessary and inaccurate here.

I thus decided to use the robot’s built-in joint encoders to calibrate the material directly

to the robot. I used the gravity compensation mode on the Panda robot to physically move

35



www.manaraa.com

the robot’s arm, touching the tip of the ball-end mill to 3 corners of the block. I then

used the forward kinematics of the robot from the known joint positions, along with the

measured offset of the tip of the ball-end mill with respect to the robot’s final link, to

calculate the positions of the three corners, and thus determine the exact position of the

block with respect to the robot.

My primary test for this method was visual validation of the sculpting process. The

simulation of the Panda robot already validated the algorithm for generating collision-free

trajectories. Visual observation of the physical process allowed me to verify that the trajec-

tories generated were feasible on the real robot, and that the end result was as desired.

I sculpted a Statue of David with a voxel resolution of 32 × 32 × 32. With the 1
4
"

ball-end mill, voxels have a size of just larger than 1
4
". This gives a material size of ap-

proximately 9"× 9"× 9". The voxel resolution was chosen to provide enough detail in the

model without making the experiment too complex.

4.5 Subdivision Surface Representation with Multi-Link Manipulator

My evaluation of the subdivision surface approach was also primarily visual. I verified

functionality of the method through intensive unit testing. Then I performed some basic

physical experiments to conclude my research. Due to time constraints 1 , I was unable

to sculpt any complex models using the subdivision approach. Instead, in addition to unit

testing to verify the core functionality of the method, I sculpted some basic shapes for

visual validation.

Since the material is directly clamped onto the workspace, the 3D model must be at-

tached to a solid base so that the desired model is not disconnected from the clamped mate-

rial during sculpting. While it is quite straightforward in the voxel representation to attach

the given 3D model to a solid base due to the generally flat sides of the model, the freeform

1Due to the global COVID-19 pandemic beginning in March 2020, I had limited access to the lab and the
Panda robot. I limited my experiments to be as efficient as possible for my own safety as well as that of my
colleagues sharing the lab space
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subdivision surfaces did not allow for this. To satisfy this need, I chose models with flat

bases so that they could be easily sculpted without disconnecting from the base. Further,

I placed the models in the material such that flat base of the model would be along one of

the sides of the material. Thus, any shells at the bottom of the model will automatically be

removed when taking the intersection of the model with the material.

I tested the subdivision method with the same physical robot setup as with the octree

representation. I tested the subdivision method on two basic shapes – a cube, and a cylinder.

The cylinder was oriented with a flat face on the bottom. While the cube served as a basic

test for the sampling method, the cylinder is primarily used to compare milling of curved

surfaces against the octree representation.
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CHAPTER 5

RESULTS

In this chapter, I go over the results of our experiments, and discuss the insights gains from

them.

5.1 Voxel Approach with Translating Robot

The tests of the translating robot in the pure voxel space on the Statue of David were

successful. The translating robot was able to remove voxels in the from a pure voxel grid

to generate the voxelized 3D models at 3 of the 4 voxel resolutions.

Table 5.1: Search time (seconds) for translating robot, respectively with voxel and octree
representations.

Voxel Resolution Voxel Representation Octree Representation
8× 8× 8 12 14

16× 16× 16 65 25

64× 64× 64 2745 209

256× 256× 256 N/A 1265

In Table 5.1 and in Figure 5.1, I show the search time for the different voxel resolutions

of the Statue of David model for the translating robot in the pure voxel space. As can

be seen, the time grows sharply exponentially. The serach time grows substantially from

8× 8× 8 resolution to 64× 64× 64. In fact, beyond the 64× 64× 64 voxel resolution, the

search time was completely impractical.
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5.2 Octree Representation with Translating Robot

The tests using the octree representation and the translating robot were more successful,

with all 4 voxel resolutions completely sculpted. Table 5.2 shows the number of voxels in

the block for each voxel resolution for the voxelized Statue of David model, the number of

octree-blocks in the octree representation, and the percent reduction in the number of search

nodes from the pure voxel approach to the octree representation. As the voxel resolution

increases, a higher and higher percentage of voxels are grouped up into blocks in the octree

conversion. In fact, the 256 × 256 × 256 voxel resolution in the octree representation has

just a few times more blocks than the number of voxels in the 64×64×64 voxel resolution

without the octree representation.

Table 5.2: Node count in the pure voxel and octree-graph representations of the Statue of
David.

Voxel Resolution Voxel Count Octree-Block Count % Decrease
8× 8× 8 512 354 30.9%

16× 16× 16 4096 1756 57.1%

64× 64× 64 262144 53512 79.6%

256× 256× 256 16777216 793403 95.3%

Table 5.1 shows the search time for the different voxel resolutions of the Statue of

David for the Octree approach. The decrease in the size of the search space leads to drastic

speedup of the search algorithm. This is due to a significantly reduced search complexity.

Since a larger octree with smaller neighbors can have more than 6 neighbors, the branching

factor can be higher than the branching factor in the pure voxel approach. However, the

nature of the best-first search as well as the significantly reduced number of search nodes

leads to a much faster executing search.

Figure 5.1 shows the search time in comparison to the pure voxel space approach.
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Figure 5.1: Time for completion for search in voxels and octrees for different voxel resolu-
tions with the translating robot.

Table 5.3: Search time (minutes) for multi-link manipulator robot in simulation.

Voxel Resolution Search Time (minutes) Approx Execution Time (hours)
16× 16× 16 7 0.5

64× 64× 64 47 5

256× 256× 256 457 20

5.3 Octree Representation with Multi-Link Manipulator in Simulation

The algorithm generates complete trajectories for all voxel resolutions of the 3D model

and is able to sculpt the statue successfully without any collisions. Figure 5.2 shows the

sculpted 256× 256× 256 resolution Statue of David in the simulation environment.

As expected, the search for a feasible trajectory takes significantly more time than in

the case for a translating robot, even with the octree representation. Section 5.3 shows the

time taken for generating trajectories of different voxel sizes.
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Figure 5.2: 256 × 256 × 256 Statue of David voxel model after sculpting with the Panda
multi-link manipulator in simulation.

The robot correctly terminates the search for sculpting the hollow vase (fig. 5.3). The

algorithm generated motion plans for the outside, removing the bulk of the material. The

robot was then unable to remove the voxels inside the vase through the neck. This was

because the vase was chosen to be taller than the length of the virtual mill, and the rim

of the vase was narrower than the robot’s gripper. This prevented the robot from actually

reaching inside the vase and removing voxels.

5.4 Octree Representation with Multi-Link Manipulator on a Physical Robot

The robot was successfully able to sculpt the statue without any collisions with the ma-

terial or the environment. Figure 5.4a shows the finished Statue of David sculpture and

Figure 5.4b shows the 32× 32× 32 voxel model. Visually, the sculpture is proportionally

exact. Due to residual material from the sculpting process, sharp edges are hard to see.

Since the sculpting was carried out over multiple sessions, the material was removed and

re-clamped multiple times. However, the workspace calibration procedure prevented major

errors in positioning. The full sculpting process for the 32×32×32 voxel Statue of David,
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Figure 5.3: The robot cannot sculpt this vase since the inner voxels are unreachable

including search, planning and execution, took approximately 8 to 10 hours.

As can be seen in fig. 5.4a, the surface finish with my method is not ideal. In general

multi-axis machining approaches, tool paths are designed intelligently to generate smooth

contours along the surface. Tool paths are designed to be parallel to each other to maintain

uniformity. My approach plans individual trajectories for voxels. Thus, trajectories need

not follow the curve of a surface, or be parallel to each other. Thus, while my approach

is not suitable for surface finish, it is able to quickly and efficiently remove bulk material

without chance of collisions. Note that the bottom base was manually separated from

the clamped material using a sharp cutting tool after sculpting leading to the smooth cut

surfaces.

5.5 Subdivision Surface Representation with Multi-Link Manipulator

Both models of the subdivision surface approach were sculpted successfully. Figure 5.5

shows the sculpted cube and the sculpted cylinder. Again, the models are visually exact.
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(a) Sculpted Statue of David (b) 32× 32× 32 voxelized model

Figure 5.4: Statue of David sculpted by the physical robot
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The cube shows proper flat surfaces as expected. The cylinder’s curve is smoothly sculpted

as well. Both models show the minimal amounts of residual material. Further, due to the

nature of the styrofoam material, some fuzziness on the surface is present in this approach

as well. However, due to the more structured sampling based material removal, the fuzz is

significantly less than in the voxel representation.

The major advantage of the subdivision representation over the octree representation is

the ability to sculpt curves. In the octree representation, the voxelization leaves a larger

amount of material over the desired mesh model. The cylinder is a prime example of this.

The subdivision approach is able to sculpt the curved surface of the cylinder, whereas the

voxel approach would have created a much more coarse figure for the curve. While the

surface finish is still not ideal, the lesser residual material than the voxel approach leaves a

better surface as well.
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(a) Sculpted subdivision cube

(b) Sculpted subdivision cylinder

Figure 5.5: Cube and Cylinder sculpted from a subdivision representation by the physical
robot
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CHAPTER 6

CONCLUSION

In this thesis, I have proposed a search-based algorithm for generating complete collision-

free trajectories for material removal for sculpting with a robotic manipulator. I have built

upon an initial simplified approach to produce two separate sculpting approaches based on

two different material modeling techniques – a volumetrically discrete voxel representa-

tions and a free-form subdivision surface representations. My proposed solution is com-

pletely generalized and works as expected for both representations of 3D models. I have

evaluated my methods both in simulation and on a physical robot. I have shown the time

consumed for generating the paths as an evaluation metric for sculpting in simulation, and

presented visual evidence for evaluation of the physical robot’s performance. I have also

proposed a possible future steps for this research below.

Through my experiments, I have found that though my method is not ideal for produc-

ing smooth surface finishes, it is efficiently able to remove bulk material for a sculpture. It

is able to perform this task end-to-end without any human input, intervention or supervi-

sion required. The resulting figures have such little material that current robotic sculpting

and machining techniques can be easily and quickly used to get the end result. Thus, while

my methods are not able to produce sculptures with smooth surfaces, they are able to auto-

mate a significant amount of work, making the given sculpting problem significantly easier,

faster and cheaper to solve through existing multi-axis machining methods.

6.1 Future Works

The primary limitation of my subdivision approach is that, for a given concave model,

though it is able to remove all the material with minimal residue, it is not able to provide a

perfect surface finish. This is only a limitation on the final shell of the process. A method
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to overcome this could be to generate toolpaths along the surface of the 3D model using

current multi-axis machining methods, fitting initial robot trajectories to those toolpaths,

and then performing optimization on the robot’s trajectory that would include collision

constraints. Since much of the material would already have been removed by my approach,

collision detection will be much simpler using the given 3D model as a collision object.
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